MAX materials and MXene materials are new two-dimensional materials who have attracted much attention in recent years, with excellent physical, chemical, and mechanical properties, and have shown broad application prospects in lots of fields. The following is a comprehensive introduction to the properties, applications, and development trends of MAX and MXene materials.
What is MAX material?
MAX phase material is actually a layered carbon nitride inorganic non-metallic material consisting of M, A, X elements on the periodic table, collectively known as “MAX phase”. M represents transition metal elements, like titanium, zirconium, hafnium, etc., A represents the main group elements, like aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer consists of M, A, X, the 3 elements of the alternating composition arrangement, with hexagonal lattice structure. Because of the electrical conductivity of metal and high strength, high-temperature resistance and corrosion resistance of structural ceramics, they may be commonly used in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding along with other fields.
Properties of MAX material
MAX material is really a new type of layered carbon nitride inorganic non-metallic material using the conductive and thermal conductive qualities of metal, comprising three elements using the molecular formula of Mn 1AXn (n=1, 2 or 3), where M refers to the transition metal, A refers to the main-group elements, and X refers to the aspects of C and N. The MXene material is really a graphene-like structure obtained from the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. MAX Phases and MXenes are novel two-dimensional nanomaterials made from carbon, nitrogen, oxygen, and halogens.
Applications of MAX materials
(1) Structural materials: the wonderful physical properties of MAX materials make them have a wide range of applications in structural materials. For instance, Ti3SiC2 is a kind of MAX material with good high-temperature performance and oxidation resistance, which may be used to manufacture high-temperature furnaces and aero-engine components.
(2) Functional materials: Besides structural materials, MAX materials are also found in functional materials. For instance, some MAX materials have good electromagnetic shielding properties and conductivity and can be used to manufacture electromagnetic shielding covers, coatings, etc. In addition, some MAX materials also have better photocatalytic properties, and electrochemical properties can be used in photocatalytic and electrochemical reactions.
(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which may be utilized in energy materials. For example, K4(MP4)(P4) is one of the MAX materials with high ionic conductivity and electrochemical activity, which bring a raw material to manufacture solid-state electrolyte materials and electrochemical energy storage devices.
Exactly What are MXene materials?
MXene materials are a new kind of two-dimensional nanomaterials obtained by MAX phase treatment, like the structure of graphene. The top of MXene materials can interact with more functional atoms and molecules, and a high specific area, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation ways of MXene materials usually range from the etching treatment of the MAX phase and also the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties such as electrical conductivity, magnetism and optics can be realized.
Properties of MXene materials
MXene materials certainly are a new type of two-dimensional transition metal carbide or nitride materials composed of metal and carbon or nitrogen elements. These materials have excellent physical properties, including high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., in addition to good chemical stability and the opportunity to maintain high strength and stability at high temperatures.
Applications of MXene materials
(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and are popular in energy storage and conversion. For instance, MXene materials can be used as electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. In addition, MXene materials can also be used as catalysts in fuel cells to boost the activity and stability in the catalyst.
(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity may be used in electromagnetic protection. As an example, MXene materials can be used electromagnetic shielding coatings, electromagnetic shielding cloth, as well as other applications in electronic products and personal protection, enhancing the effectiveness and stability of electromagnetic protection.
(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and can be used in sensing and detection. As an example, MXene materials can be used as gas sensors in environmental monitoring, which may realize high sensitivity and selectivity detection of gases. Additionally, MXene materials could also be used as biosensors in medical diagnostics and other fields.
Development trend of MAX and MXene Materials
As new 2D materials, MAX and MXene materials have excellent performance and application prospects. In the future, with all the continuous progress of science and technology and also the improving demand for services for applications, the preparation technology, performance optimization, and application regions of MAX and MXene materials is going to be further expanded and improved. The following aspects could become the main objective of future research and development direction:
Preparation technology: MAX and MXene materials are mostly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. Later on, new preparation technologies and techniques may be further explored to understand a more efficient, energy-saving and eco friendly preparation process.
Optimization of performance: The performance of MAX and MXene materials has already been high, however, there is still room for further optimization. Down the road, the composition, structure, surface treatment as well as other aspects of the fabric may be studied and improved thorough to improve the material’s performance and stability.
Application areas: MAX materials and MXene materials have already been popular in numerous fields, but you can still find many potential application areas to get explored. Down the road, they can be further expanded, like in artificial intelligence, biomedicine, environmental protection as well as other fields.
In conclusion, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show a wide application prospect in numerous fields. With all the continuous progress of science and technology and also the continuous improvement of application demand, the preparation technology, performance optimization and application areas of MAX and MXene materials will be further expanded and improved.
MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.